E-rating Machine Translation
نویسندگان
چکیده
We describe our submissions to the WMT11 shared MT evaluation task: MTeRater and MTeRater-Plus. Both are machine-learned metrics that use features from e-rater R ©, an automated essay scoring engine designed to assess writing proficiency. Despite using only features from e-rater and without comparing to translations, MTeRater achieves a sentencelevel correlation with human rankings equivalent to BLEU. Since MTeRater only assesses fluency, we build a meta-metric, MTeRaterPlus, that incorporates adequacy by combining MTeRater with other MT evaluation metrics and heuristics. This meta-metric has a higher correlation with human rankings than either MTeRater or individual MT metrics alone. However, we also find that e-rater features may not have significant impact on correlation in every case.
منابع مشابه
Automatic Rating of Machine Translatability
We describe a method for automatically rating the machine translatability of a sentence for various machine translation (MT) systems. The method requires that the MT system can bidirectionally translate sentences in both source and target languages. However, it does not require reference translations, as is usual for automatic MT evaluation. By applying this method to every component of a sente...
متن کاملCS562/CS662 (Natural Language Processing): Evaluating machine translation quality with BLEU
The gold standard for measuring machine translation quality is the rating of candidate sentences by by experienced translators. However, automated measures are necessary for rapid iterative development. BLEU (Papineni et al. 2002) is the best-known automatic measure of translation quality. BLEU and related measures are used to automatically evaluate machine translation (MT) systems, as well as ...
متن کاملA Comparative Study of English-Persian Translation of Neural Google Translation
Many studies abroad have focused on neural machine translation and almost all concluded that this method was much closer to humanistic translation than machine translation. Therefore, this paper aimed at investigating whether neural machine translation was more acceptable in English-Persian translation in comparison with machine translation. Hence, two types of text were chosen to be translated...
متن کاملInvolving Language Professionals in the Evaluation of Machine Translation
Significant breakthroughs in machine translation only seem possible if human translators are taken into the loop. While automatic evaluation and scoring mechanisms such as BLEU have enabled the fast development of systems, it is not clear how systems can meet real-world (quality) requirements in industrial translation scenarios today. The TARAXŰ project paves the way for wide usage of hybrid ma...
متن کاملOn the Translation Quality of Google Translate: With a Concentration on Adjectives
Translation, whose first traces date back at least to 3000 BC (Newmark, 1988), has always been considered time-consuming and labor-consuming. In view of this, experts have made numerous efforts to develop some mechanical systems which can reduce part of this time and labor. The advancement of computers in the second half of the twentieth century paved the ground for the invention of machine tra...
متن کامل